- Preface
- Define Network
- Custom Module
- Custom Module with Params
- Implement Sequential
- Custom Forward Function
- Access Parameter
- Access All Params
- Nested Network Params
- Parameter Initialization
- Share Parameters
- Save & Load Network Params
- GPU Info
- GPU Device
- Network on GPU
Preface
这块内容繁多冗长,每次查教程也很繁琐,所以就直接整理成 Cheatsheet了。
代码全部出自 d2l chapter 5.
Define Network
import torch
from torch import nn
from torch.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
net(X)
tensor([[-0.1216, 0.0153, 0.0546, -0.0989, -0.0582, 0.1448, -0.3097, -0.0478,
-0.1381, 0.0593],
[-0.1315, 0.0540, 0.0157, -0.0701, -0.2307, 0.0710, -0.2731, -0.0527,
-0.2170, 0.1010]], grad_fn=<AddmmBackward0>)
Custom Module
class MLP(nn.Module):
# 用模型参数声明层。这里,我们声明两个全连接的层
def __init__(self):
# 调用MLP的父类Module的构造函数来执行必要的初始化。
# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
super().__init__()
self.hidden = nn.Linear(20, 256) # 隐藏层
self.out = nn.Linear(256, 10) # 输出层
# 定义模型的前向传播,即如何根据输入X返回所需的模型输出
def forward(self, X):
# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
return self.out(F.relu(self.hidden(X)))
net = MLP()
net(X)
tensor([[ 0.0097, 0.0207, 0.1453, -0.0685, 0.0505, 0.2176, 0.0180, -0.2566,
0.1506, -0.0075],
[ 0.0425, -0.0261, 0.1969, 0.0842, 0.0037, 0.1542, -0.0176, -0.1798,
0.0179, -0.1200]], grad_fn=<AddmmBackward0>)
Custom Module with Params
PyTorch 会自动识别参数 (nn.Parameter
)
class MyLinear(nn.Module):
def __init__(self, in_units, units):
super().__init__()
self.weight = nn.Parameter(torch.randn(in_units, units))
self.bias = nn.Parameter(torch.randn(units,))
def forward(self, X):
linear = torch.matmul(X, self.weight.data) + self.bias.data
return F.relu(linear)
linear = MyLinear(5, 3)
linear.weight
Parameter containing:
tensor([[-2.2981, -1.8825, -0.9347],
[ 0.1222, -1.0374, 1.1512],
[-0.2859, -0.0680, 0.9072],
[ 1.2177, -0.8947, 0.6278],
[ 1.4800, 0.5804, -0.9661]], requires_grad=True)
Implement Sequential
class MySequential(nn.Module):
def __init__(self, *args):
super().__init__()
for idx, module in enumerate(args):
# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
# 变量_modules中。module的类型是OrderedDict
self._modules[str(idx)] = module
def forward(self, X):
# OrderedDict保证了按照成员添加的顺序遍历它们
for block in self._modules.values():
X = block(X)
return X
net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)
tensor([[ 0.0978, 0.0979, 0.1417, -0.3019, 0.0232, -0.0246, 0.0881, -0.0908,
-0.0428, -0.0388],
[ 0.1624, 0.0251, -0.0085, -0.3342, 0.0645, -0.1956, 0.1111, -0.0802,
-0.1252, 0.0666]], grad_fn=<AddmmBackward0>)
Custom Forward Function
class FixedHiddenMLP(nn.Module):
def __init__(self):
super().__init__()
# 不计算梯度的随机权重参数。因此其在训练期间保持不变
self.rand_weight = torch.rand((20, 20), requires_grad=False)
self.linear = nn.Linear(20, 20)
def forward(self, X):
X = self.linear(X)
# 使用创建的常量参数以及relu和mm函数
X = F.relu(torch.mm(X, self.rand_weight) + 1)
# 复用全连接层。这相当于两个全连接层共享参数
X = self.linear(X)
# 控制流
while X.abs().sum() > 1:
X /= 2
return X.sum()
net = FixedHiddenMLP()
net(X)
tensor(-0.0431, grad_fn=<SumBackward0>)
注:关于参数复用,专门有文章讨论。
Access Parameter
对于这个网络:
import torch
from torch import nn
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
tensor([[0.2621],
[0.3079]], grad_fn=<AddmmBackward0>)
第三层的全部参数:
net[2].state_dict()
OrderedDict(
[
('weight', tensor([[ 0.0743, 0.1876, 0.0571, 0.3447, 0.3483, -0.2867, 0.3273, -0.1527]])),
('bias', tensor([0.1162]))
]
)
指定访问:
print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
<class 'torch.nn.parameter.Parameter'>
Parameter containing:
tensor([0.1162], requires_grad=True)
tensor([0.1162])
Access All Params
net[0].named_parameters()
net.named_parameters()
net.state_dict()
Nested Network Params
如果网络有嵌套,或者有自定义参数 (nn.Parameter
),PyTorch 会自动识别所有参数。
def block1():
return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
nn.Linear(8, 4), nn.ReLU())
def block2():
net = nn.Sequential()
for i in range(4):
# 在这里嵌套
net.add_module(f'block {i}', block1())
return net
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
print(rgnet)
Sequential(
(0): Sequential(
(block 0): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
(block 1): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
(block 2): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
(block 3): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
)
(1): Linear(in_features=4, out_features=1, bias=True)
)
rgnet[0][1][0].bias.data
tensor([ 0.3572, 0.2251, -0.3531, -0.0630, 0.4908, -0.4802, -0.3679, -0.2210])
Parameter Initialization
Normal Distribution:
def init_normal(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, mean=0, std=0.01)
nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
Constant:
def init_constant(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 1)
nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
Xavier and constant combination:
def xavier(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
def init_42(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 42)
net[0].apply(xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
Custom Initialization:
$$
\begin{aligned}
w \sim \begin{cases}
U(5, 10) & \text{ 可能性 } \frac{1}{4} \\
0 & \text{ 可能性 } \frac{1}{2} \\
U(-10, -5) & \text{ 可能性 } \frac{1}{4}
\end{cases}
\end{aligned}
$$
def my_init(m):
if type(m) == nn.Linear:
print("Init", *[(name, param.shape)
for name, param in m.named_parameters()][0])
nn.init.uniform_(m.weight, -10, 10)
m.weight.data *= m.weight.data.abs() >= 5
net.apply(my_init)
Share Parameters
# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
shared, nn.ReLU(),
shared, nn.ReLU(),
nn.Linear(8, 1))
Save & Load Network Params
torch.save(net.state_dict(), 'mlp.params')
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()
GPU Info
!nvidia-smi
GPU Device
这里定义了两个函数:
def try_gpu(i=0): #@save
"""如果存在,则返回gpu(i),否则返回cpu()"""
if torch.cuda.device_count() >= i + 1:
return torch.device(f'cuda:{i}')
return torch.device('cpu')
def try_all_gpus(): #@save
"""返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""
devices = [torch.device(f'cuda:{i}')
for i in range(torch.cuda.device_count())]
return devices if devices else [torch.device('cpu')]
try_gpu(), try_gpu(10), try_all_gpus()
(device(type='cuda', index=0),
device(type='cpu'),
[device(type='cuda', index=0), device(type='cuda', index=1)])
Network on GPU
net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())